Path Integral Representation for Schrödinger Operators with Bernstein Functions of the Laplacian
نویسندگان
چکیده
Path integral representations for generalized Schrödinger operators obtained under a class of Bernstein functions of the Laplacian are established. The one-to-one correspondence of Bernstein functions with Lévy subordinators is used, thereby the role of Brownian motion entering the standard Feynman-Kac formula is taken here by subordinated Brownian motion. As specific examples, fractional and relativistic Schrödinger operators with magnetic field and spin are covered. Results on self-adjointness of these operators are obtained under conditions allowing for singular magnetic fields and singular external potentials as well as arbitrary integer and half-integer spin values. This approach also allows to propose a notion of generalized Kato class for which hypercontractivity of the associated generalized Schrödinger semigroup is shown. As a consequence, diamagnetic and energy comparison inequalities are also derived.
منابع مشابه
Lieb-Thirring Bound for Schrödinger Operators with Bernstein Functions of the Laplacian
A Lieb-Thirring bound for Schrödinger operators with Bernstein functions of the Laplacian is shown by functional integration techniques. Several specific cases are discussed in detail.
متن کاملSandwich-type theorems for a class of integral operators with special properties
In the present paper, we prove subordination, superordination and sandwich-type properties of a certain integral operators for univalent functions on open unit disc, moreover the special behavior of this class is investigated.
متن کاملError bounds in approximating n-time differentiable functions of self-adjoint operators in Hilbert spaces via a Taylor's type expansion
On utilizing the spectral representation of selfadjoint operators in Hilbert spaces, some error bounds in approximating $n$-time differentiable functions of selfadjoint operators in Hilbert Spaces via a Taylor's type expansion are given.
متن کاملExpansion methods for solving integral equations with multiple time lags using Bernstein polynomial of the second kind
In this paper, the Bernstein polynomials are used to approximate the solutions of linear integral equations with multiple time lags (IEMTL) through expansion methods (collocation method, partition method, Galerkin method). The method is discussed in detail and illustrated by solving some numerical examples. Comparison between the exact and approximated results obtained from these methods is car...
متن کاملClasses of admissible functions associated with certain integral operators applied to meromorphic functions
In the present paper, by making use of the differential subordination and superordination results of Miller and Mocanu, certain classes of admissible functions are determined so that subordination as well as superordination implications of functions associated with an integral operator hold. Additionally, differential sandwich-type result is obtained.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009